If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-30=0
a = 3; b = 5; c = -30;
Δ = b2-4ac
Δ = 52-4·3·(-30)
Δ = 385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{385}}{2*3}=\frac{-5-\sqrt{385}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{385}}{2*3}=\frac{-5+\sqrt{385}}{6} $
| 21-2h=41 | | 5x=10=13 | | 3b+b=2(2b+3) | | -33=5r-4r | | 4b+3(3b+8)=6+7b | | 6(9+2a)=34 | | 7^{2x-1}=49^{x-3} | | 5x+2(x-1)=36 | | 27=3+7(k+9) | | 17y−13y=16 | | 4+8x=4(7–x) | | M^2+6m-3=9 | | (x(x))+x-1=0 | | -18-7f=2(9f+4) | | 2/3x=1/3x-7 | | 3=u/4=2 | | 10q-2q=8 | | -1=m+32/8 | | t-34=102 | | b/4-1=4 | | 11m-9m=6 | | 9.999999999999998e+302=9.999999999999998e+302 | | 20x+80=17x+8 | | 21x^2-14x=x | | 7(g-819)=917 | | (x+8)+x=28 | | z/2–10=13 | | w/4-11=14 | | 9x/5=8 | | 25m+6=906 | | 6(8m+4)=-312 | | t-78=16 |